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the structures of jenamidines A to C

Barry B. Snider,a,* Jeremy R. Duvall,a Isabel Sattlerb and Xueshi Huangb

aDepartment of Chemistry MS 015, Brandeis University, Waltham, MA 02454-9110, USA
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Abstract—Reaction of 2,3-dihydro-4-pyridone (4) with isatoic anhydride (5) provided the unstable product 6, for which the NMR
spectral data are quite different from those reported for the ring system of jenamidine A. This suggests that the proposed structures 1
to 3 of jenamidines A to C should be revised to 8 to 10.
� 2004 Elsevier Ltd. All rights reserved.
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Scheme 1. Preparation and decomposition of tricyclic piperidone 6.
One of us recently reported the isolation of three bicyclic
alkaloids, jenamidines A (1), B (2), and C (3), from the
culture broth of Streptomyces sp. (strain HKI0297).1

The structures were proposed as the best fit based on
IR, UV, NMR, and mass spectral data. However, fur-
ther consideration suggested that the aminal hydrogen
H9a of 1 should absorb further downfield than the ob-
served value of d 3.94 in jenamidine A, and that carbons
C7 and C9 of 1, which are adjacent to a ketone, should
absorb further downfield than the observed values of d
27.5 and 28.8, respectively.
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These expectations were confirmed by the synthesis of
tricycle 6 (see Scheme 1), which is a good model for
the piperidone moiety of the proposed structure for
jenamidine A (1). Reaction of 2,3-dihydro-4-pyridone
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(4)2 with isatoic anhydride (5) and Et3N in THF for
8h in a sealed tube at 80 �C provided 29% (65% based
on recovered 4) of the surprisingly unstable tricyclic pip-
eridone 6.3,4 Treatment of 6 with dilute acid resulted in a
facile retro-Mannich reaction to give 75 quantitatively.6

Partial conversion of 6 to 7 occurred during flash chro-
matography on silica gel. The spectral data of 6 con-
firmed our earlier concerns about the proposed
structure of jenamidine A (1). H9a of 6 absorbs at d
5.12 (dd, J = 3.7, 9.2Hz) and the three CH2 carbons
absorb at d 47.8, 40.9, and 39.7. All the absorptions
and coupling constants are consistent with those
expected for this structure.3

These observations suggested that the three methylene
carbons of jenamidine A might be part of a pyrrolidine
ring with the ketone elsewhere in the molecule. Eventu-
ally, we considered the unusual ketene aminals 8, 9, and
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Figure 1. Revised structures for jenamidines A, B, and C.

Table 1. 13C NMR data in d for compounds 8–11

C 8a,b 9a,b 10a 11c

1 204.66 (C) 202.47(C) 202.4 (C) 205.7 (C)

204.55 (C) 202.39 (C)

2 93.83 (CH) 90.62 (CH) 90.4 (CH) 94.0 (CH)

93.78 (CH) 90.60 (CH)

3 173.47 (C) 172.29 (C) 171.5 (C) 167.7 (C)

173.43 (C) 172.22 (C)

4 49.30 (CH2) 49.19 (CH2) 48.5 (CH2) 55.2 (CH)

5 28.75 (CH2) 27.65 (CH2) 27.8 (CH2) 35.8 (CH2)

6 27.49 (CH2) 33.57 (CH2) 33.6 (CH2) 28.7 (CH2)

27.46 (CH2)

7 70.76 (CH) 97.22 (C) 97.0 (C) 75.1 (C)

70.65 (CH) 97.14 (C)

1 0 169.82 (C) 170.20 (C) 168.4 (C) 164.6 (C)

169.81 (C) 170.15 (C)

2 0 131.62 (C) 131.67 (C) 133.7 (C) ––

131.60 (C)

3 0 143.66 (CH) 143.86 (CH) 146.9 (CH) ––

143.63 (CH) 143.81 (CH)

4 0 65.30 (CH) 65.32 (CH) 22.4 (CH2) ––

65.25 (CH) 65.27 (CH)

5 0 22.69 (CH3) 22.68 (CH3) 13.6 (CH3) ––

22.66 (CH3) 22.65 (CH3)

6 0 12.92 (CH3) 12.92 (CH3) 57.0 (CH2) ––

a Spectra recorded at 75MHz in CD3OD. Assignments made by 2-D

NMR techniques (COSY, HSQC, HMBC).
b Doubled signals cannot be assigned to individual diastereomers.
c Spectral data (125MHz, CDCl3) from Ref. 8.

Table 2. 1H NMR data in d for compounds 8–11

H 8a 9a 10a 11b

2 5.65 (1, s)c 5.56 (1, s)c 5.61 (1, s) 5.75 (1, s)

5.61 (1, s)c 5.52 (1, s)c

4 3.44 (1, m) 3.54 (1, m) 3.54 (1, m) 4.08 (1, m)

4 3.20 (1, m) 3.22 (1,m) 3.15 (1, m) ––

5 2.15 (1, m) 2.35 (1, m) 2.35 (1, m) 2.46 (1, m)

5 2.15 (1, m) 2.06 (1, m) 2.10 (1, m) 1.83 (1, m)

6 1.53 (1, m) 1.64 (1, m) 1.65 (1, m) 1.69 (1, m)

6 2.20 (1, m) 1.95 (1, m) 1.91 (1, m) 1.85 (1, m)

7 3.94 (1, m)d –– –– ––

3 0 6.38 (1, br d) 6.35 (1, br d) 6.72 (2, t)

J = 7.9 J = 7.8 J = 7.6

4 0 4.65 (1, dq)d 4.62 (1, dq) 2.31 (2, dq)

J = 7.9, 6.5 J = 7.8, 6.4 J = 7.6, 7.6

5 0 1.29 (3, d)d 1.29 (3, d) 1.05 (3, t)

J = 6.5 J = 6.4 J = 7.6

6 0 1.91 (3, br s) 1.90 (3, br s) 4.45 (2, s)

a Spectra recorded at 300MHz in CD3OD. Assignments made by 2-D

NMR techniques (COSY, HSQC, HMBC).
b Spectral data (500MHz, CDCl3) from Ref. 8.
c Doubled signals could not be assigned to individual isomers.
d Doubled signals not fully resolved.
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10 as possible structures for jenamidines A, B, and C
(Fig. 1). The 1H and 13C chemical shifts and HMBC
correlations are consistent with this assignment.

A literature search indicated that bohemamine (12),
whose structure was determined by X-ray crystallogra-
phy,7 and NP25302 (11), whose structure was very re-
cently reported,8 have the same ring system as 8–10.
The 13C and 1H NMR spectral data for the revised
structures of jenamidines A (8), B (9), and C (10) corre-
spond well to those of NP25302, except for the expected
differences due to the two methyl groups and different
side chain as shown in Tables 1 and 2 (the numbering
system is that previously used for NP25302). It is note-
worthy that the aminal carbon of the jenamidines ab-
sorbs from d 171.5 to 173.5, a region more typical of
an amide carbonyl than a double bond. The spectral
data for the side chain of jenamidines A and B corre-
spond well with those reported for ethyl 4-hydroxy-2-
methylpent-2-enoate.9
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Detailed analysis of the 13C NMR data of the natural
products revealed the occurrence of several doubled sig-
nals of similar intensity in samples of apparently chro-
matographically homogeneous jenamidines A (8) and
B (9). In the case of jenamidine A (8), two signals with
shift differences between 0.02 and 0.1ppm were observed
for all carbons except for C4, C5, and C6 0. A second set
of proton signals for H2, H7, H4 0, and H5 0 cannot be
fully assigned due to overlapping multiplets. For jenam-
idine B (9), additional carbon signals with shift differ-
ences between 0.02 and 0.09ppm were detected for all
carbons, except for C4, C5, C6, C2 0, and C6 0. The absence
of such doubled signals in jenamidine C (10) strongly
suggests a mixture of two diastereomers for 8 and 9 with
differing stereochemistry at C4 0. Therefore the com-
pounds were renamed as jenamidines A1/A2 (8) and
B1/B2 (9).

Strikingly, in jenamidines A1/A2 (8), the highest carbon
shift differences are found for C1 (0.106ppm) and C7
(0.107ppm). The NOESY data suggest a possible expla-
nation. Only one of the two diastereomers shows a corre-
lation between H2 and H3 0, which may indicate a folded
side chain, possibly with hydrogen bonding between the
4 0-OH and the C1 carbonyl, which could be more pre-
ferred in one of the C4 0 configurations. In addition, the
differing side chain conformations significantly affect
H2 resulting in a proton shift difference of 0.04ppm.

Detailed reinvestigation of NMR data revealed another
interesting feature of the jenamidines. The signal inten-
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sity of the two H2 singlets diminishes slowly, but signif-
icantly, over time in CD3OD due to deuterium ex-
change. In jenamidine A1/A2 (8), about 20% of the
signal intensity is lost in 3days at an equal rate for both
diastereomers. This exchange may be occurring by
reversible protonation to give the amidinium cation.
Alternatively, exchange could be initiated by deprotona-
tion of the amide hydrogen. Lack of sufficient material
did not allow us to further explore these observations.

In conclusion, structure determination of novel natural
products with unusual skeletons from spectroscopic
data alone remains a challenging problem. Synthesis
can still play an important role as exemplified here by
the preparation of model 6 for the proposed structure
of jenamidine A (1). Differences between the spectral
data of the two compounds indicated that the proposed
structures 1 to 3 are incorrect. Revised structures 8 to 10
for jenamidines A to C fit the data well and have the
same ring system as the natural products bohemamine
and NP25302. Efforts are currently underway to confirm
these reassignments by total synthesis.
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